Nuprl Lemma : RankEx1_ProdL-prodl_wf
∀[T:Type]. ∀[v:RankEx1(T)].  RankEx1_ProdL-prodl(v) ∈ T × RankEx1(T) supposing ↑RankEx1_ProdL?(v)
Proof
Definitions occuring in Statement : 
RankEx1_ProdL-prodl: RankEx1_ProdL-prodl(v)
, 
RankEx1_ProdL?: RankEx1_ProdL?(v)
, 
RankEx1: RankEx1(T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
RankEx1-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
RankEx1_ProdL?_wf, 
RankEx1_wf
\mforall{}[T:Type].  \mforall{}[v:RankEx1(T)].    RankEx1\_ProdL-prodl(v)  \mmember{}  T  \mtimes{}  RankEx1(T)  supposing  \muparrow{}RankEx1\_ProdL?(v)
Date html generated:
2015_07_17-AM-07_48_17
Last ObjectModification:
2015_01_27-AM-09_38_28
Home
Index