Nuprl Lemma : RankEx1_ProdR-prodr_wf
∀[T:Type]. ∀[v:RankEx1(T)].  RankEx1_ProdR-prodr(v) ∈ RankEx1(T) × T supposing ↑RankEx1_ProdR?(v)
Proof
Definitions occuring in Statement : 
RankEx1_ProdR-prodr: RankEx1_ProdR-prodr(v)
, 
RankEx1_ProdR?: RankEx1_ProdR?(v)
, 
RankEx1: RankEx1(T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
RankEx1-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
RankEx1_ProdR?_wf, 
RankEx1_wf
\mforall{}[T:Type].  \mforall{}[v:RankEx1(T)].    RankEx1\_ProdR-prodr(v)  \mmember{}  RankEx1(T)  \mtimes{}  T  supposing  \muparrow{}RankEx1\_ProdR?(v)
Date html generated:
2015_07_17-AM-07_48_25
Last ObjectModification:
2015_01_27-AM-09_37_50
Home
Index