Nuprl Lemma : RankEx1_ProdR-prodr_wf

[T:Type]. ∀[v:RankEx1(T)].  RankEx1_ProdR-prodr(v) ∈ RankEx1(T) × supposing ↑RankEx1_ProdR?(v)


Proof




Definitions occuring in Statement :  RankEx1_ProdR-prodr: RankEx1_ProdR-prodr(v) RankEx1_ProdR?: RankEx1_ProdR?(v) RankEx1: RankEx1(T) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Lemmas :  RankEx1-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf RankEx1_ProdR?_wf RankEx1_wf
\mforall{}[T:Type].  \mforall{}[v:RankEx1(T)].    RankEx1\_ProdR-prodr(v)  \mmember{}  RankEx1(T)  \mtimes{}  T  supposing  \muparrow{}RankEx1\_ProdR?(v)



Date html generated: 2015_07_17-AM-07_48_25
Last ObjectModification: 2015_01_27-AM-09_37_50

Home Index