Nuprl Lemma : RankEx2_LeafS-leafs_wf

[S,T:Type]. ∀[v:RankEx2(S;T)].  RankEx2_LeafS-leafs(v) ∈ supposing ↑RankEx2_LeafS?(v)


Proof




Definitions occuring in Statement :  RankEx2_LeafS-leafs: RankEx2_LeafS-leafs(v) RankEx2_LeafS?: RankEx2_LeafS?(v) RankEx2: RankEx2(S;T) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  RankEx2-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf RankEx2_LeafS?_wf RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[v:RankEx2(S;T)].    RankEx2\_LeafS-leafs(v)  \mmember{}  S  supposing  \muparrow{}RankEx2\_LeafS?(v)



Date html generated: 2015_07_17-AM-07_49_40
Last ObjectModification: 2015_01_27-AM-09_37_05

Home Index