Nuprl Lemma : RankEx2_LeafT-leaft_wf
∀[S,T:Type]. ∀[v:RankEx2(S;T)]. RankEx2_LeafT-leaft(v) ∈ T supposing ↑RankEx2_LeafT?(v)
Proof
Definitions occuring in Statement :
RankEx2_LeafT-leaft: RankEx2_LeafT-leaft(v)
,
RankEx2_LeafT?: RankEx2_LeafT?(v)
,
RankEx2: RankEx2(S;T)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Lemmas :
RankEx2-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
assert_wf,
RankEx2_LeafT?_wf,
RankEx2_wf
\mforall{}[S,T:Type]. \mforall{}[v:RankEx2(S;T)]. RankEx2\_LeafT-leaft(v) \mmember{} T supposing \muparrow{}RankEx2\_LeafT?(v)
Date html generated:
2015_07_17-AM-07_49_32
Last ObjectModification:
2015_01_27-AM-09_37_26
Home
Index