Nuprl Lemma : RankEx2_Prod-prod_wf

[S,T:Type]. ∀[v:RankEx2(S;T)].  RankEx2_Prod-prod(v) ∈ RankEx2(S;T) × S × supposing ↑RankEx2_Prod?(v)


Proof




Definitions occuring in Statement :  RankEx2_Prod-prod: RankEx2_Prod-prod(v) RankEx2_Prod?: RankEx2_Prod?(v) RankEx2: RankEx2(S;T) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Lemmas :  RankEx2-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf RankEx2_Prod?_wf RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[v:RankEx2(S;T)].
    RankEx2\_Prod-prod(v)  \mmember{}  RankEx2(S;T)  \mtimes{}  S  \mtimes{}  T  supposing  \muparrow{}RankEx2\_Prod?(v)



Date html generated: 2015_07_17-AM-07_49_47
Last ObjectModification: 2015_01_27-AM-09_36_46

Home Index