Nuprl Lemma : RankEx2_Prod-prod_wf
∀[S,T:Type]. ∀[v:RankEx2(S;T)].  RankEx2_Prod-prod(v) ∈ RankEx2(S;T) × S × T supposing ↑RankEx2_Prod?(v)
Proof
Definitions occuring in Statement : 
RankEx2_Prod-prod: RankEx2_Prod-prod(v)
, 
RankEx2_Prod?: RankEx2_Prod?(v)
, 
RankEx2: RankEx2(S;T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
RankEx2-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
assert_wf, 
RankEx2_Prod?_wf, 
RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[v:RankEx2(S;T)].
    RankEx2\_Prod-prod(v)  \mmember{}  RankEx2(S;T)  \mtimes{}  S  \mtimes{}  T  supposing  \muparrow{}RankEx2\_Prod?(v)
Date html generated:
2015_07_17-AM-07_49_47
Last ObjectModification:
2015_01_27-AM-09_36_46
Home
Index