Nuprl Lemma : RankEx2_Union-union_wf

[S,T:Type]. ∀[v:RankEx2(S;T)].  RankEx2_Union-union(v) ∈ S × RankEx2(S;T) RankEx2(S;T) supposing ↑RankEx2_Union?(v)


Proof




Definitions occuring in Statement :  RankEx2_Union-union: RankEx2_Union-union(v) RankEx2_Union?: RankEx2_Union?(v) RankEx2: RankEx2(S;T) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] union: left right universe: Type
Lemmas :  RankEx2-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf RankEx2_Union?_wf RankEx2_wf
\mforall{}[S,T:Type].  \mforall{}[v:RankEx2(S;T)].
    RankEx2\_Union-union(v)  \mmember{}  S  \mtimes{}  RankEx2(S;T)  +  RankEx2(S;T)  supposing  \muparrow{}RankEx2\_Union?(v)



Date html generated: 2015_07_17-AM-07_49_53
Last ObjectModification: 2015_01_27-AM-09_36_35

Home Index