Nuprl Lemma : RankEx2_UnionList-unionlist_wf
∀[S,T:Type]. ∀[v:RankEx2(S;T)].
RankEx2_UnionList-unionlist(v) ∈ T + (RankEx2(S;T) List) supposing ↑RankEx2_UnionList?(v)
Proof
Definitions occuring in Statement :
RankEx2_UnionList-unionlist: RankEx2_UnionList-unionlist(v)
,
RankEx2_UnionList?: RankEx2_UnionList?(v)
,
RankEx2: RankEx2(S;T)
,
list: T List
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
union: left + right
,
universe: Type
Lemmas :
RankEx2-ext,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
assert_wf,
RankEx2_UnionList?_wf,
RankEx2_wf
\mforall{}[S,T:Type]. \mforall{}[v:RankEx2(S;T)].
RankEx2\_UnionList-unionlist(v) \mmember{} T + (RankEx2(S;T) List) supposing \muparrow{}RankEx2\_UnionList?(v)
Date html generated:
2015_07_17-AM-07_50_10
Last ObjectModification:
2015_01_27-AM-09_36_33
Home
Index