Nuprl Lemma : bm_compare_greater_to_less_eq

[K:Type]. ∀[compare:bm_compare(K)]. ∀[k1,k2:K].  (0 < compare k1 k2  ((compare k2 k1) ≤ 0))


Proof




Definitions occuring in Statement :  bm_compare: bm_compare(K) less_than: a < b uall: [x:A]. B[x] le: A ≤ B implies:  Q apply: a natural_number: $n universe: Type
Lemmas :  sq_stable__le decidable__le decidable__lt false_wf not-le-2 condition-implies-le minus-add minus-zero add-zero add-commutes zero-add add_functionality_wrt_le le-add-cancel bm_compare_greater_greater_false trans_wf le_wf anti_sym_wf connex_wf refl_wf equal-wf-T-base sym_wf less_than_wf bm_compare_wf
\mforall{}[K:Type].  \mforall{}[compare:bm\_compare(K)].  \mforall{}[k1,k2:K].    (0  <  compare  k1  k2  {}\mRightarrow{}  ((compare  k2  k1)  \mleq{}  0))



Date html generated: 2015_07_17-AM-08_19_33
Last ObjectModification: 2015_01_27-PM-00_37_00

Home Index