Nuprl Lemma : hdf-at-locs_wf
∀[A,B:Type]. ∀[pr:Id ─→ hdataflow(A;B)]. ∀[i:Id]. ∀[locs:bag(Id)].  (hdf-at-locs(pr;i;locs) ∈ hdataflow(A;B))
Proof
Definitions occuring in Statement : 
hdf-at-locs: hdf-at-locs(pr;i;locs)
, 
hdataflow: hdataflow(A;B)
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
bag-deq-member_wf, 
id-deq_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
bag-member_wf, 
eqtt_to_assert, 
assert-bag-deq-member, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
hdf-halt_wf, 
bag_wf, 
Id_wf, 
hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[i:Id].  \mforall{}[locs:bag(Id)].
    (hdf-at-locs(pr;i;locs)  \mmember{}  hdataflow(A;B))
Date html generated:
2015_07_17-AM-08_05_22
Last ObjectModification:
2015_01_27-PM-00_16_11
Home
Index