Nuprl Lemma : hdf-at-locs_wf

[A,B:Type]. ∀[pr:Id ─→ hdataflow(A;B)]. ∀[i:Id]. ∀[locs:bag(Id)].  (hdf-at-locs(pr;i;locs) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-at-locs: hdf-at-locs(pr;i;locs) hdataflow: hdataflow(A;B) Id: Id uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  bag-deq-member_wf id-deq_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf bag-member_wf eqtt_to_assert assert-bag-deq-member iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot hdf-halt_wf bag_wf Id_wf hdataflow_wf
\mforall{}[A,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[i:Id].  \mforall{}[locs:bag(Id)].
    (hdf-at-locs(pr;i;locs)  \mmember{}  hdataflow(A;B))



Date html generated: 2015_07_17-AM-08_05_22
Last ObjectModification: 2015_01_27-PM-00_16_11

Home Index