Nuprl Lemma : mRuleimpE-hypnum_wf

[v:mFOLRule()]. mRuleimpE-hypnum(v) ∈ ℕ supposing ↑mRuleimpE?(v)


Proof




Definitions occuring in Statement :  mRuleimpE-hypnum: mRuleimpE-hypnum(v) mRuleimpE?: mRuleimpE?(v) mFOLRule: mFOLRule() nat: assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Lemmas :  mFOLRule-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom assert_wf mRuleimpE?_wf mFOLRule_wf
\mforall{}[v:mFOLRule()].  mRuleimpE-hypnum(v)  \mmember{}  \mBbbN{}  supposing  \muparrow{}mRuleimpE?(v)



Date html generated: 2015_07_17-AM-07_55_57
Last ObjectModification: 2015_01_27-AM-10_05_34

Home Index