Nuprl Lemma : prod-Leibniz-type
∀A,B:Type.  (Leibniz-type{i:l}(A) ⇒ Leibniz-type{i:l}(B) ⇒ Leibniz-type{i:l}(A × B))
Proof
Definitions occuring in Statement : 
Leibniz-type: Leibniz-type{i:l}(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
Leibniz-type: Leibniz-type{i:l}(T), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q, 
guard: {T}
Lemmas referenced : 
pi1_wf_top, 
istype-void, 
pi2_wf, 
subtype_rel_self, 
Leibniz-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
sqequalRule, 
unionEquality, 
applyEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
universeIsType, 
inhabitedIsType, 
productIsType, 
independent_pairFormation, 
unionIsType, 
because_Cache, 
functionIsType, 
instantiate, 
equalityIstype, 
cumulativity, 
universeEquality, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
applyLambdaEquality
Latex:
\mforall{}A,B:Type.    (Leibniz-type\{i:l\}(A)  {}\mRightarrow{}  Leibniz-type\{i:l\}(B)  {}\mRightarrow{}  Leibniz-type\{i:l\}(A  \mtimes{}  B))
Date html generated:
2019_10_31-AM-07_25_57
Last ObjectModification:
2019_09_19-PM-06_34_10
Theory : constructive!algebra
Home
Index