Nuprl Lemma : cosetTC-set-function
∀s:coSet{i:l}. set-function{i:l}(s; a.cosetTC(a))
Proof
Definitions occuring in Statement : 
cosetTC: cosetTC(a)
, 
set-function: set-function{i:l}(s; x.f[x])
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cosetTC: cosetTC(a)
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
set-function: set-function{i:l}(s; x.f[x])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setmem_wf, 
seteq_wf, 
coSet_wf, 
subtype_rel_self, 
copath-at_wf, 
nat_wf, 
copath-length_wf, 
less_than_wf, 
copath_wf, 
mk-coset_wf, 
seteq_weakening, 
cosetTC_functionality, 
cosetTC_wf, 
seteq_functionality
Rules used in proof : 
instantiate, 
rename, 
setElimination, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
universeEquality, 
setEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:coSet\{i:l\}.  set-function\{i:l\}(s;  a.cosetTC(a))
Date html generated:
2018_07_29-AM-10_01_44
Last ObjectModification:
2018_07_18-PM-06_41_04
Theory : constructive!set!theory
Home
Index