Nuprl Lemma : function-graph-fun-graph
∀b:coSet{i:l}. ∀f:(x:coSet{i:l} × (x ∈ b)) ⟶ coSet{i:l}.
  ((∀z1,z2:x:coSet{i:l} × (x ∈ b).  (seteq(fst(z1);fst(z2)) ⇒ seteq(f z1;f z2)))
  ⇒ (∀x:coSet{i:l}. ((set-image(f;b) ⊆ x) ⇒ function-graph{i:l}(b;_.x;fun-graph(b;f)))))
Proof
Definitions occuring in Statement : 
fun-graph: fun-graph(b;f), 
set-image: set-image(f;b), 
function-graph: function-graph{i:l}(A;a.B[a];grph), 
setsubset: (a ⊆ b), 
setmem: (x ∈ s), 
seteq: seteq(s1;s2), 
coSet: coSet{i:l}, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
product: x:A × B[x]
Definitions unfolded in proof : 
orderedpairset: (a,b), 
guard: {T}, 
pi1: fst(t), 
cand: A c∧ B, 
function-graph: function-graph{i:l}(A;a.B[a];grph), 
exists: ∃x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq_transitivity, 
seteq_inversion, 
seteq_functionality, 
seteq-orderedpairs-iff, 
singleset_wf, 
pairset_wf, 
sigmaset_wf, 
setmem-sigmaset, 
setmem-fun-graph, 
pi1_wf, 
all_wf, 
setsubset_wf, 
fun-graph_wf, 
orderedpairset_wf, 
seteq_weakening, 
seteq_wf, 
setmem_wf, 
coSet_wf, 
exists_wf, 
setmem-image, 
set-image_wf, 
setsubset-iff
Rules used in proof : 
rename, 
dependent_pairEquality, 
impliesLevelFunctionality, 
allLevelFunctionality, 
levelHypothesis, 
setEquality, 
impliesFunctionality, 
addLevel, 
functionEquality, 
independent_pairFormation, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
productEquality, 
instantiate, 
allFunctionality, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}b:coSet\{i:l\}.  \mforall{}f:(x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}z1,z2:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
    {}\mRightarrow{}  (\mforall{}x:coSet\{i:l\}.  ((set-image(f;b)  \msubseteq{}  x)  {}\mRightarrow{}  function-graph\{i:l\}(b;$_{}$.x;fun-\000Cgraph(b;f)))))
Date html generated:
2018_07_29-AM-10_09_20
Last ObjectModification:
2018_07_18-PM-10_10_46
Theory : constructive!set!theory
Home
Index