Nuprl Lemma : setmem-fun-graph

b:coSet{i:l}. ∀f:(x:coSet{i:l} × (x ∈ b)) ⟶ coSet{i:l}.
  ((∀z1,z2:x:coSet{i:l} × (x ∈ b).  (seteq(fst(z1);fst(z2))  seteq(f z1;f z2)))
   (∀y:coSet{i:l}. ((y ∈ fun-graph(b;f)) ⇐⇒ ∃p:x:coSet{i:l} × (x ∈ b). seteq(y;(fst(p),f p)))))


Proof




Definitions occuring in Statement :  fun-graph: fun-graph(b;f) orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  true: True squash: T top: Top Wsup: Wsup(a;b) mk-set: f"(T) pi1: fst(t) set-dom: set-dom(s) pi2: snd(t) set-item: set-item(s;x) fun-graph: fun-graph(b;f) mk-coset: mk-coset(T;f) subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] exists: x:A. B[x] rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  true_wf squash_wf seteq_weakening seteq_functionality seteq-orderedpairs-iff seteqweaken_wf setmem-mk-coset subtype_rel_self mem-mk-set_wf2 mk-coset_wf setmem-iff coSet_subtype subtype_coSet all_wf pi1_wf orderedpairset_wf seteq_wf coSet_wf exists_wf fun-graph_wf setmem_wf
Rules used in proof :  levelHypothesis baseClosed imageMemberEquality natural_numberEquality equalityTransitivity imageElimination equalitySymmetry hyp_replacement addLevel because_Cache voidEquality voidElimination isect_memberEquality dependent_pairEquality dependent_pairFormation independent_functionElimination dependent_functionElimination hypothesis_subsumption functionEquality applyEquality lambdaEquality sqequalRule cumulativity productEquality instantiate productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}b:coSet\{i:l\}.  \mforall{}f:(x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}z1,z2:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
    {}\mRightarrow{}  (\mforall{}y:coSet\{i:l\}.  ((y  \mmember{}  fun-graph(b;f))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}p:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).  seteq(y;(fst(p),f  p)))))



Date html generated: 2018_07_29-AM-10_09_14
Last ObjectModification: 2018_07_18-PM-09_37_41

Theory : constructive!set!theory


Home Index