Nuprl Lemma : setmem-image

b:coSet{i:l}. ∀f:(x:coSet{i:l} × (x ∈ b)) ⟶ coSet{i:l}.
  ((∀z1,z2:x:coSet{i:l} × (x ∈ b).  (seteq(fst(z1);fst(z2))  seteq(f z1;f z2)))
   (∀y:coSet{i:l}. ((y ∈ set-image(f;b)) ⇐⇒ ∃x:x:coSet{i:l} × (x ∈ b). seteq(y;f x))))


Proof




Definitions occuring in Statement :  set-image: set-image(f;b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] pi1: fst(t) subtype_rel: A ⊆B mk-coset: mk-coset(T;f) set-dom: set-dom(s) set-image: set-image(f;b) set-item: set-item(s;x) pi2: snd(t) top: Top guard: {T} squash: T true: True mk-set: f"(T) Wsup: Wsup(a;b)
Lemmas referenced :  setmem_wf set-image_wf seteq_wf coSet_wf subtype_coSet coSet_subtype setmem-iff mk-coset_wf subtype_rel_self mem-mk-set_wf2 set-dom_wf setmem-mk-coset istype-void seteqweaken_wf seteq_functionality seteq_weakening squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination sqequalRule productIsType because_Cache applyEquality functionIsType inhabitedIsType hypothesis_subsumption dependent_functionElimination independent_functionElimination dependent_pairFormation_alt dependent_pairEquality_alt isect_memberEquality_alt voidElimination equalityTransitivity equalitySymmetry hyp_replacement lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}b:coSet\{i:l\}.  \mforall{}f:(x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}z1,z2:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
    {}\mRightarrow{}  (\mforall{}y:coSet\{i:l\}.  ((y  \mmember{}  set-image(f;b))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).  seteq(y;f  x))))



Date html generated: 2019_10_31-AM-06_34_51
Last ObjectModification: 2018_11_10-PM-00_52_16

Theory : constructive!set!theory


Home Index