Nuprl Lemma : setmem-image
∀b:coSet{i:l}. ∀f:(x:coSet{i:l} × (x ∈ b)) ⟶ coSet{i:l}.
  ((∀z1,z2:x:coSet{i:l} × (x ∈ b).  (seteq(fst(z1);fst(z2)) 
⇒ seteq(f z1;f z2)))
  
⇒ (∀y:coSet{i:l}. ((y ∈ set-image(f;b)) 
⇐⇒ ∃x:x:coSet{i:l} × (x ∈ b). seteq(y;f x))))
Proof
Definitions occuring in Statement : 
set-image: set-image(f;b)
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
mk-coset: mk-coset(T;f)
, 
set-dom: set-dom(s)
, 
set-image: set-image(f;b)
, 
set-item: set-item(s;x)
, 
pi2: snd(t)
, 
top: Top
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
mk-set: f"(T)
, 
Wsup: Wsup(a;b)
Lemmas referenced : 
setmem_wf, 
set-image_wf, 
seteq_wf, 
coSet_wf, 
subtype_coSet, 
coSet_subtype, 
setmem-iff, 
mk-coset_wf, 
subtype_rel_self, 
mem-mk-set_wf2, 
set-dom_wf, 
setmem-mk-coset, 
istype-void, 
seteqweaken_wf, 
seteq_functionality, 
seteq_weakening, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
sqequalRule, 
productIsType, 
because_Cache, 
applyEquality, 
functionIsType, 
inhabitedIsType, 
hypothesis_subsumption, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
dependent_pairEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}b:coSet\{i:l\}.  \mforall{}f:(x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}z1,z2:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
    {}\mRightarrow{}  (\mforall{}y:coSet\{i:l\}.  ((y  \mmember{}  set-image(f;b))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:x:coSet\{i:l\}  \mtimes{}  (x  \mmember{}  b).  seteq(y;f  x))))
Date html generated:
2019_10_31-AM-06_34_51
Last ObjectModification:
2018_11_10-PM-00_52_16
Theory : constructive!set!theory
Home
Index