Nuprl Lemma : setmem-sigmaset

A:coSet{i:l}. ∀B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}.
  ((∀a1,a2:coSet{i:l}.  ((a1 ∈ A)  (a2 ∈ A)  seteq(a1;a2)  seteq(B[a1];B[a2])))
   (∀x:coSet{i:l}. ((x ∈ Σa:A.B[a]) ⇐⇒ ∃a:coSet{i:l}. ((a ∈ A) ∧ (∃b:coSet{i:l}. ((b ∈ B[a]) ∧ seteq(x;(a,b))))))))


Proof




Definitions occuring in Statement :  sigmaset: Σa:A.B[a] orderedpairset: (a,b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  orderedpairset: (a,b) guard: {T} cand: c∧ B top: Top mk-coset: mk-coset(T;f) sigmaset: Σa:A.B[a] subtype_rel: A ⊆B exists: x:A. B[x] rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  singleset_functionality pairset_functionality singleset_wf pairset_wf seteq_functionality set-dom_wf seteq_weakening setmem_functionality setmem-iff setmem_functionality_1 set-item-mem mk-coset_wf set-item_wf setmem-coset setmem-mk-coset coSet_subtype subtype_coSet all_wf orderedpairset_wf seteq_wf exists_wf coSet_wf sigmaset_wf setmem_wf
Rules used in proof :  spreadEquality dependent_pairEquality universeEquality functionExtensionality independent_functionElimination rename dependent_functionElimination dependent_pairFormation voidEquality voidElimination isect_memberEquality hypothesis_subsumption because_Cache functionEquality dependent_set_memberEquality productEquality instantiate productElimination cumulativity hypothesis setEquality applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A:coSet\{i:l\}.  \mforall{}B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}.
    ((\mforall{}a1,a2:coSet\{i:l\}.    ((a1  \mmember{}  A)  {}\mRightarrow{}  (a2  \mmember{}  A)  {}\mRightarrow{}  seteq(a1;a2)  {}\mRightarrow{}  seteq(B[a1];B[a2])))
    {}\mRightarrow{}  (\mforall{}x:coSet\{i:l\}
                ((x  \mmember{}  \mSigma{}a:A.B[a])
                \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  \mwedge{}  (\mexists{}b:coSet\{i:l\}.  ((b  \mmember{}  B[a])  \mwedge{}  seteq(x;(a,b))))))))



Date html generated: 2018_07_29-AM-10_04_16
Last ObjectModification: 2018_07_18-PM-03_53_40

Theory : constructive!set!theory


Home Index