Nuprl Lemma : set-eq_wf
∀[s,s':coSet{i:l}].  (set-eq(s;s') ∈ ℙ)
Proof
Definitions occuring in Statement : 
set-eq: set-eq(s;s')
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set-eq: set-eq(s;s')
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
bigrel_wf, 
coSet_wf, 
all_wf, 
set-dom_wf, 
exists_wf, 
set-item_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
applyEquality, 
functionEquality, 
universeEquality, 
lambdaFormation, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[s,s':coSet\{i:l\}].    (set-eq(s;s')  \mmember{}  \mBbbP{})
Date html generated:
2019_10_31-AM-06_32_44
Last ObjectModification:
2018_08_04-PM-05_18_05
Theory : constructive!set!theory
Home
Index