Nuprl Lemma : setimage-iff

x,b:coSet{i:l}.
  (setimage{i:l}(x;b)
  ⇐⇒ ∃f:(z:coSet{i:l} × (z ∈ b)) ⟶ coSet{i:l}
       ((∀z1,z2:z:coSet{i:l} × (z ∈ b).  (seteq(fst(z1);fst(z2))  seteq(f z1;f z2))) ∧ seteq(x;set-image(f;b))))


Proof




Definitions occuring in Statement :  set-image: set-image(f;b) setimage: setimage{i:l}(x;b) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] product: x:A × B[x]
Definitions unfolded in proof :  guard: {T} rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] cand: c∧ B prop: member: t ∈ T exists: x:A. B[x] setimage: setimage{i:l}(x;b) implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  seteq_weakening setmem_functionality setmem-image co-seteq-iff exists_wf iff_wf setimage_wf set-image_wf pi1_wf seteq_wf setmem_wf coSet_wf all_wf
Rules used in proof :  because_Cache levelHypothesis impliesFunctionality allFunctionality addLevel independent_functionElimination dependent_functionElimination applyEquality functionEquality lambdaEquality sqequalRule cumulativity isectElimination extract_by_obid introduction instantiate cut productEquality hypothesis promote_hyp hypothesisEquality dependent_pairFormation thin productElimination sqequalHypSubstitution independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}x,b:coSet\{i:l\}.
    (setimage\{i:l\}(x;b)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:(z:coSet\{i:l\}  \mtimes{}  (z  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}
              ((\mforall{}z1,z2:z:coSet\{i:l\}  \mtimes{}  (z  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
              \mwedge{}  seteq(x;set-image(f;b))))



Date html generated: 2018_07_29-AM-10_08_57
Last ObjectModification: 2018_07_18-PM-09_14_12

Theory : constructive!set!theory


Home Index