Nuprl Lemma : setimage-iff
∀x,b:coSet{i:l}.
  (setimage{i:l}(x;b)
  
⇐⇒ ∃f:(z:coSet{i:l} × (z ∈ b)) ⟶ coSet{i:l}
       ((∀z1,z2:z:coSet{i:l} × (z ∈ b).  (seteq(fst(z1);fst(z2)) 
⇒ seteq(f z1;f z2))) ∧ seteq(x;set-image(f;b))))
Proof
Definitions occuring in Statement : 
set-image: set-image(f;b)
, 
setimage: setimage{i:l}(x;b)
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
setimage: setimage{i:l}(x;b)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq_weakening, 
setmem_functionality, 
setmem-image, 
co-seteq-iff, 
exists_wf, 
iff_wf, 
setimage_wf, 
set-image_wf, 
pi1_wf, 
seteq_wf, 
setmem_wf, 
coSet_wf, 
all_wf
Rules used in proof : 
because_Cache, 
levelHypothesis, 
impliesFunctionality, 
allFunctionality, 
addLevel, 
independent_functionElimination, 
dependent_functionElimination, 
applyEquality, 
functionEquality, 
lambdaEquality, 
sqequalRule, 
cumulativity, 
isectElimination, 
extract_by_obid, 
introduction, 
instantiate, 
cut, 
productEquality, 
hypothesis, 
promote_hyp, 
hypothesisEquality, 
dependent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}x,b:coSet\{i:l\}.
    (setimage\{i:l\}(x;b)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:(z:coSet\{i:l\}  \mtimes{}  (z  \mmember{}  b))  {}\mrightarrow{}  coSet\{i:l\}
              ((\mforall{}z1,z2:z:coSet\{i:l\}  \mtimes{}  (z  \mmember{}  b).    (seteq(fst(z1);fst(z2))  {}\mRightarrow{}  seteq(f  z1;f  z2)))
              \mwedge{}  seteq(x;set-image(f;b))))
Date html generated:
2018_07_29-AM-10_08_57
Last ObjectModification:
2018_07_18-PM-09_14_12
Theory : constructive!set!theory
Home
Index