Nuprl Lemma : setmem-imageset

B,f,x:coSet{i:l}.  ((x ∈ imageset(B;f)) ⇐⇒ (x ∈ B) ∧ (∃pr:coSet{i:l}. ((pr ∈ f) ∧ seteq(x;snd(pr)))))


Proof




Definitions occuring in Statement :  imageset: imageset(B;f) orderedpair-snd: snd(pr) setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  exists: x:A. B[x] rev_implies:  Q existssetmem: a∈A.P[a] set-predicate: set-predicate{i:l}(s;a.P[a]) implies:  Q so_apply: x[s] prop: so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q imageset: imageset(B;f) all: x:A. B[x]
Lemmas referenced :  orderedpair-snd_functionality existssetmem-iff exists_wf iff_wf sub-set_wf seteq_weakening set-item_wf seteq_functionality setmem_wf coSet_wf orderedpair-snd_wf seteq_wf existssetmem_wf setmem-sub-coset
Rules used in proof :  andLevelFunctionality productEquality instantiate existsLevelFunctionality promote_hyp levelHypothesis because_Cache existsFunctionality independent_functionElimination cumulativity setEquality hypothesis rename setElimination lambdaEquality sqequalRule isectElimination hypothesisEquality dependent_functionElimination extract_by_obid introduction impliesFunctionality independent_pairFormation thin productElimination sqequalHypSubstitution addLevel cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}B,f,x:coSet\{i:l\}.
    ((x  \mmember{}  imageset(B;f))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  B)  \mwedge{}  (\mexists{}pr:coSet\{i:l\}.  ((pr  \mmember{}  f)  \mwedge{}  seteq(x;snd(pr)))))



Date html generated: 2018_07_29-AM-10_05_40
Last ObjectModification: 2018_07_18-PM-03_19_38

Theory : constructive!set!theory


Home Index