Nuprl Lemma : setmem-imageset
∀B,f,x:coSet{i:l}.  ((x ∈ imageset(B;f)) 
⇐⇒ (x ∈ B) ∧ (∃pr:coSet{i:l}. ((pr ∈ f) ∧ seteq(x;snd(pr)))))
Proof
Definitions occuring in Statement : 
imageset: imageset(B;f)
, 
orderedpair-snd: snd(pr)
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
existssetmem: ∃a∈A.P[a]
, 
set-predicate: set-predicate{i:l}(s;a.P[a])
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
imageset: imageset(B;f)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
orderedpair-snd_functionality, 
existssetmem-iff, 
exists_wf, 
iff_wf, 
sub-set_wf, 
seteq_weakening, 
set-item_wf, 
seteq_functionality, 
setmem_wf, 
coSet_wf, 
orderedpair-snd_wf, 
seteq_wf, 
existssetmem_wf, 
setmem-sub-coset
Rules used in proof : 
andLevelFunctionality, 
productEquality, 
instantiate, 
existsLevelFunctionality, 
promote_hyp, 
levelHypothesis, 
because_Cache, 
existsFunctionality, 
independent_functionElimination, 
cumulativity, 
setEquality, 
hypothesis, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
impliesFunctionality, 
independent_pairFormation, 
thin, 
productElimination, 
sqequalHypSubstitution, 
addLevel, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}B,f,x:coSet\{i:l\}.
    ((x  \mmember{}  imageset(B;f))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  B)  \mwedge{}  (\mexists{}pr:coSet\{i:l\}.  ((pr  \mmember{}  f)  \mwedge{}  seteq(x;snd(pr)))))
Date html generated:
2018_07_29-AM-10_05_40
Last ObjectModification:
2018_07_18-PM-03_19_38
Theory : constructive!set!theory
Home
Index