Nuprl Lemma : existssetmem-iff

A:coSet{i:l}
  ∀[P:{a:coSet{i:l}| (a ∈ A)}  ⟶ ℙ]. (set-predicate{i:l}(A;a.P[a])  (∃a∈A.P[a] ⇐⇒ ∃a:coSet{i:l}. ((a ∈ A) ∧ P[a])))


Proof




Definitions occuring in Statement :  existssetmem: a∈A.P[a] set-predicate: set-predicate{i:l}(s;a.P[a]) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B mk-coset: mk-coset(T;f) so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q exists: x:A. B[x] top: Top existssetmem: a∈A.P[a] uimplies: supposing a set-dom: set-dom(s) pi1: fst(t) set-item: set-item(s;x) pi2: snd(t) set-predicate: set-predicate{i:l}(s;a.P[a])
Lemmas referenced :  subtype_coSet coSet_subtype existssetmem_wf setmem_wf set-predicate_wf coSet_wf existssetmem-implies mk-coset_wf setmem-mk-coset istype-void subtype_rel-equal set-dom_wf set-item-mem set-item_wf seteq_wf setmem-coset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt independent_pairFormation hypothesis_subsumption cut introduction extract_by_obid hypothesis hypothesisEquality applyEquality sqequalHypSubstitution sqequalRule productElimination thin universeIsType isectElimination lambdaEquality_alt setIsType inhabitedIsType productIsType because_Cache dependent_set_memberEquality_alt cumulativity setElimination rename functionIsType universeEquality dependent_functionElimination independent_functionElimination isect_memberEquality_alt voidElimination dependent_pairFormation_alt independent_isectElimination

Latex:
\mforall{}A:coSet\{i:l\}
    \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}]
        (set-predicate\{i:l\}(A;a.P[a])  {}\mRightarrow{}  (\mexists{}a\mmember{}A.P[a]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:coSet\{i:l\}.  ((a  \mmember{}  A)  \mwedge{}  P[a])))



Date html generated: 2019_10_31-AM-06_33_38
Last ObjectModification: 2018_11_10-PM-00_35_24

Theory : constructive!set!theory


Home Index