Nuprl Lemma : cu-cube-restriction-id

[I:Cname List]. ∀[alpha:c𝕌(I)]. ∀[K:Cname List]. ∀[a:name-morph(I;K)]. ∀[T:cu-cube-family(alpha;K;a)].
  (cu-cube-restriction(alpha;K;K;1;a;T) T ∈ cu-cube-family(alpha;K;a))


Proof




Definitions occuring in Statement :  cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) cu-cube-family: cu-cube-family(alpha;L;f) cubical-universe: c𝕌 I-cube: X(I) id-morph: 1 name-morph: name-morph(I;J) coordinate_name: Cname list: List uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pi1: fst(t) cu-cube-family: cu-cube-family(alpha;L;f) cu-cube-restriction: cu-cube-restriction(alpha;L;J;f;a;T) pi2: snd(t) and: P ∧ Q squash: T prop: all: x:A. B[x] true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-universe-I-cube equal_wf squash_wf true_wf list_wf coordinate_name_wf iff_weakening_equal cu-cube-family_wf name-morph_wf I-cube_wf cubical-universe_wf
Rules used in proof :  sqequalHypSubstitution cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis setElimination rename productElimination sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality dependent_functionElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination instantiate isect_memberFormation isect_memberEquality axiomEquality

Latex:
\mforall{}[I:Cname  List].  \mforall{}[alpha:c\mBbbU{}(I)].  \mforall{}[K:Cname  List].  \mforall{}[a:name-morph(I;K)].
\mforall{}[T:cu-cube-family(alpha;K;a)].
    (cu-cube-restriction(alpha;K;K;1;a;T)  =  T)



Date html generated: 2017_10_05-PM-04_13_27
Last ObjectModification: 2017_07_28-AM-11_30_05

Theory : cubical!sets


Home Index