Nuprl Lemma : get_face-dimension
∀[X:CubicalSet]. ∀[I,J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)]. ∀[y:nameset(J)]. ∀[c:ℕ2].
  (dimension(get_face(y;c;box)) ~ y)
Proof
Definitions occuring in Statement : 
get_face: get_face(y;c;box)
, 
open_box: open_box(X;I;J;x;i)
, 
face-dimension: dimension(f)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
I-face: I-face(X;I)
, 
face-dimension: dimension(f)
, 
pi1: fst(t)
, 
face-name: face-name(f)
, 
pi2: snd(t)
, 
top: Top
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
get_face_wf, 
nameset_wf, 
open_box_wf, 
int_seg_wf, 
list_wf, 
coordinate_name_wf, 
cubical-set_wf, 
pi1_wf_top, 
istype-void, 
subtype_base_sq, 
nameset_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomSqEquality, 
sqequalRule, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
applyLambdaEquality, 
independent_pairEquality, 
voidElimination, 
instantiate, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I,J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
\mforall{}[y:nameset(J)].  \mforall{}[c:\mBbbN{}2].
    (dimension(get\_face(y;c;box))  \msim{}  y)
Date html generated:
2019_11_05-PM-00_28_17
Last ObjectModification:
2018_11_08-PM-00_51_52
Theory : cubical!sets
Home
Index