Nuprl Lemma : get_face-dimension

[X:CubicalSet]. ∀[I,J:Cname List]. ∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[box:open_box(X;I;J;x;i)]. ∀[y:nameset(J)]. ∀[c:ℕ2].
  (dimension(get_face(y;c;box)) y)


Proof




Definitions occuring in Statement :  get_face: get_face(y;c;box) open_box: open_box(X;I;J;x;i) face-dimension: dimension(f) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q and: P ∧ Q I-face: I-face(X;I) face-dimension: dimension(f) pi1: fst(t) face-name: face-name(f) pi2: snd(t) top: Top uimplies: supposing a sq_type: SQType(T) guard: {T}
Lemmas referenced :  get_face_wf nameset_wf open_box_wf int_seg_wf list_wf coordinate_name_wf cubical-set_wf pi1_wf_top istype-void subtype_base_sq nameset_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt equalityIsType1 equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomSqEquality sqequalRule isect_memberEquality_alt isectIsTypeImplies universeIsType natural_numberEquality setElimination rename productElimination applyLambdaEquality independent_pairEquality voidElimination instantiate cumulativity independent_isectElimination

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[I,J:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[box:open\_box(X;I;J;x;i)].
\mforall{}[y:nameset(J)].  \mforall{}[c:\mBbbN{}2].
    (dimension(get\_face(y;c;box))  \msim{}  y)



Date html generated: 2019_11_05-PM-00_28_17
Last ObjectModification: 2018_11_08-PM-00_51_52

Theory : cubical!sets


Home Index