Nuprl Lemma : name-morph_subtype_domain
∀[I,J:Cname List]. ∀[f:name-morph(I;J)].  (f ∈ name-morph-domain(f;I) ⟶ nameset(J))
Proof
Definitions occuring in Statement : 
name-morph-domain: name-morph-domain(f;I)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
name-morph-domain: name-morph-domain(f;I)
, 
nameset: nameset(L)
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
subtype_rel_dep_function, 
nameset_wf, 
extd-nameset_wf, 
top_wf, 
member_filter_2, 
coordinate_name_wf, 
isname_wf, 
l_member_wf, 
name-morph-domain_wf, 
all_wf, 
assert_wf, 
equal_wf, 
name-morph_wf, 
list_wf, 
assert-isname
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
voidEquality, 
independent_isectElimination, 
voidElimination, 
lambdaFormation, 
isect_memberEquality, 
because_Cache, 
functionExtensionality, 
dependent_functionElimination, 
setEquality, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:Cname  List].  \mforall{}[f:name-morph(I;J)].    (f  \mmember{}  name-morph-domain(f;I)  {}\mrightarrow{}  nameset(J))
Date html generated:
2016_05_20-AM-09_30_34
Last ObjectModification:
2015_12_28-PM-04_46_45
Theory : cubical!sets
Home
Index