Nuprl Lemma : path-eq_weakening

[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)].
  ∀p,q:I-path(X;A;a;b;I;alpha).  path-eq(X;A;I;alpha;p;q) supposing q ∈ I-path(X;A;a;b;I;alpha)


Proof




Definitions occuring in Statement :  path-eq: path-eq(X;A;I;alpha;p;q) I-path: I-path(X;A;a;b;I;alpha) cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q all: x:A. B[x] uimplies: supposing a prop: guard: {T} refl: Refl(T;x,y.E[x; y])
Lemmas referenced :  path-eq-equiv equal_wf I-path_wf I-cube_wf list_wf coordinate_name_wf cubical-term_wf cubical-type_wf cubical-set_wf and_wf path-eq_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination lambdaFormation axiomEquality rename dependent_functionElimination hyp_replacement equalitySymmetry sqequalRule dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setElimination setEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
    \mforall{}p,q:I-path(X;A;a;b;I;alpha).    path-eq(X;A;I;alpha;p;q)  supposing  p  =  q



Date html generated: 2016_10_28-PM-00_14_07
Last ObjectModification: 2016_07_12-PM-00_40_59

Theory : cubical!sets


Home Index