Nuprl Lemma : path-eq_weakening
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[alpha:X(I)].
  ∀p,q:I-path(X;A;a;b;I;alpha).  path-eq(X;A;I;alpha;p;q) supposing p = q ∈ I-path(X;A;a;b;I;alpha)
Proof
Definitions occuring in Statement : 
path-eq: path-eq(X;A;I;alpha;p;q)
, 
I-path: I-path(X;A;a;b;I;alpha)
, 
cubical-term: {X ⊢ _:AF}
, 
cubical-type: {X ⊢ _}
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
coordinate_name: Cname
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
guard: {T}
, 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
path-eq-equiv, 
equal_wf, 
I-path_wf, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
and_wf, 
path-eq_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
lambdaFormation, 
axiomEquality, 
rename, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setElimination, 
setEquality
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
    \mforall{}p,q:I-path(X;A;a;b;I;alpha).    path-eq(X;A;I;alpha;p;q)  supposing  p  =  q
Date html generated:
2016_10_28-PM-00_14_07
Last ObjectModification:
2016_07_12-PM-00_40_59
Theory : cubical!sets
Home
Index