Nuprl Lemma : case-term-1

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma ⊢ _}]. ∀[u:{Gamma ⊢ _:A}]. ∀[v:Top].
  Gamma ⊢ (u ∨ v)=u:A supposing phi 1(𝔽) ∈ {Gamma ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B same-cubical-term: X ⊢ u=v:A true: True guard: {T} squash: T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  case-term-equal-left thin-context-subset context-subset-term-subtype face-1_wf istype-top cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf face-type_wf cubical_set_wf context-subset_wf subset-cubical-term context-1-subset subtype_rel_wf squash_wf true_wf istype-universe iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule axiomEquality equalityIstype inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType instantiate natural_numberEquality equalityTransitivity equalitySymmetry because_Cache independent_isectElimination lambdaEquality_alt imageElimination universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma  \mvdash{}  \_:A\}].  \mforall{}[v:Top].
    Gamma  \mvdash{}  (u  \mvee{}  v)=u:A  supposing  phi  =  1(\mBbbF{})



Date html generated: 2020_05_20-PM-03_11_30
Last ObjectModification: 2020_04_06-PM-02_01_47

Theory : cubical!type!theory


Home Index