Nuprl Lemma : comp_trm_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma.𝕀;A)].
[u:{Gamma, phi.𝕀 ⊢ _:A}]. ∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp_trm(Gamma;
            cA;
            phi;
            u;
            a0) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  comp_trm: comp_trm composition-function: composition-function{j:l,i:l}(Gamma;A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) guard: {T} comp_trm: comp_trm constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  constrained-cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf context-subset_wf thin-context-subset-adjoin istype-cubical-term composition-function_wf cubical-type_wf face-type_wf cubical_set_wf comp_term_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType thin instantiate extract_by_obid isectElimination hypothesisEquality because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].
\mforall{}[cA:composition-function\{j:l,i:l\}(Gamma.\mBbbI{};A)].  \mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp\_trm(Gamma;
                        cA;
                        phi;
                        u;
                        a0)  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\})



Date html generated: 2020_05_20-PM-04_39_32
Last ObjectModification: 2020_04_17-AM-00_45_48

Theory : cubical!type!theory


Home Index