Nuprl Lemma : comp_trm_wf
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma.𝕀;A)].
∀[u:{Gamma, phi.𝕀 ⊢ _:A}]. ∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp_trm(Gamma;
            cA;
            phi;
            u;
            a0) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
comp_trm: comp_trm, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
guard: {T}
, 
comp_trm: comp_trm, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
istype-cubical-term, 
composition-function_wf, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
comp_term_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
setElimination, 
rename
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].
\mforall{}[cA:composition-function\{j:l,i:l\}(Gamma.\mBbbI{};A)].  \mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp\_trm(Gamma;
                        cA;
                        phi;
                        u;
                        a0)  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\})
Date html generated:
2020_05_20-PM-04_39_32
Last ObjectModification:
2020_04_17-AM-00_45_48
Theory : cubical!type!theory
Home
Index