Nuprl Lemma : compatible-system_wf
∀[Gamma:j⊢]. ∀[sys:(phi:{Gamma ⊢ _:𝔽} × {Gamma, phi ⊢ _}) List].  (compatible-system{i:l}(Gamma;sys) ∈ ℙ{[i' | j']})
Proof
Definitions occuring in Statement : 
compatible-system: compatible-system{i:l}(Gamma;sys)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
compatible-system: compatible-system{i:l}(Gamma;sys)
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
Lemmas referenced : 
pairwise_wf2, 
cubical-term_wf, 
face-type_wf, 
cubical-type_wf, 
context-subset_wf, 
equal_wf, 
face-and_wf, 
subset-cubical-type, 
face-term-implies-subset, 
face-term-and-implies1, 
face-term-and-implies2, 
list_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
spreadEquality, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
inhabitedIsType, 
productIsType, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[sys:(phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}  \mtimes{}  \{Gamma,  phi  \mvdash{}  \_\})  List].
    (compatible-system\{i:l\}(Gamma;sys)  \mmember{}  \mBbbP{}\{[i'  |  j']\})
Date html generated:
2020_05_20-PM-03_09_08
Last ObjectModification:
2020_04_06-PM-11_41_59
Theory : cubical!type!theory
Home
Index