Nuprl Lemma : contractible-iff-inhabited-prop

X:j⊢. ∀A:{X ⊢ _}. ∀cA:X +⊢ Compositon(A).  ({X ⊢ _:Contractible(A)} ⇐⇒ {X ⊢ _:isProp(A)} ∧ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) is-prop: isProp(A) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B rev_implies:  Q composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced :  is-prop-contractible cubical-term_wf contractible-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j is-prop_wf composition-structure_wf cubical-type_wf cubical_set_wf contractible-to-prop_wf subtype_rel_self contr-center_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairFormation rename universeIsType instantiate isectElimination applyEquality sqequalRule productElimination independent_functionElimination productIsType because_Cache

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}cA:X  +\mvdash{}  Compositon(A).
    (\{X  \mvdash{}  \_:Contractible(A)\}  \mLeftarrow{}{}\mRightarrow{}  \{X  \mvdash{}  \_:isProp(A)\}  \mwedge{}  \{X  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-04_58_38
Last ObjectModification: 2020_04_13-PM-02_17_08

Theory : cubical!type!theory


Home Index