Nuprl Lemma : contractible-iff-inhabited-prop
∀X:j⊢. ∀A:{X ⊢ _}. ∀cA:X +⊢ Compositon(A).  ({X ⊢ _:Contractible(A)} 
⇐⇒ {X ⊢ _:isProp(A)} ∧ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
composition-structure: Gamma ⊢ Compositon(A)
, 
is-prop: isProp(A)
, 
contractible-type: Contractible(A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced : 
is-prop-contractible, 
cubical-term_wf, 
contractible-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
is-prop_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
contractible-to-prop_wf, 
subtype_rel_self, 
contr-center_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
rename, 
universeIsType, 
instantiate, 
isectElimination, 
applyEquality, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
productIsType, 
because_Cache
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}cA:X  +\mvdash{}  Compositon(A).
    (\{X  \mvdash{}  \_:Contractible(A)\}  \mLeftarrow{}{}\mRightarrow{}  \{X  \mvdash{}  \_:isProp(A)\}  \mwedge{}  \{X  \mvdash{}  \_:A\})
Date html generated:
2020_05_20-PM-04_58_38
Last ObjectModification:
2020_04_13-PM-02_17_08
Theory : cubical!type!theory
Home
Index