Nuprl Lemma : csm+-ap-term-wf

[H,K:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[A:{H, phi.𝕀 ⊢ _}]. ∀[tau:K j⟶ H]. ∀[t:{H, phi.𝕀 ⊢ _:A}].
  ((t)tau+ ∈ {K, (phi)tau.𝕀 ⊢ _:(A)tau+})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf context-subset_wf cubical_set_cumulativity-i-j face-type_wf csm-face-type interval-type_wf csm+_wf_interval context-subset-map subtype_rel_self cube_set_map_wf cubical-term_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry because_Cache axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{H,  phi.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[t:\{H,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
    ((t)tau+  \mmember{}  \{K,  (phi)tau.\mBbbI{}  \mvdash{}  \_:(A)tau+\})



Date html generated: 2020_05_20-PM-03_06_38
Last ObjectModification: 2020_04_06-PM-00_03_29

Theory : cubical!type!theory


Home Index