Nuprl Lemma : csm-cubical-bool

[H:j⊢]. ∀[s:H j⟶ ()].  ((Bool)s Bool ∈ {H ⊢ _:c𝕌})


Proof




Definitions occuring in Statement :  cubical-bool: Bool cubical-universe: c𝕌 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B trivial-cube-set: () cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  cubical-bool: Bool uall: [x:A]. B[x] member: t ∈ T prop: squash: T all: x:A. B[x] true: True discrete-comp: discrete-comp(G;T) csm-composition: (comp)sigma universe-encode: encode(T;cT)
Lemmas referenced :  cube_set_map_wf trivial-cube-set_wf cubical_set_wf csm-universe-encode discrete-cubical-type_wf bool_wf discrete-comp_wf equal_wf squash_wf true_wf istype-universe cubical-term_wf-universe csm-discrete-cubical-type universe-encode_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate hyp_replacement equalitySymmetry applyEquality lambdaEquality_alt imageElimination equalityTransitivity universeEquality dependent_functionElimination Error :memTop,  natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  ()].    ((Bool)s  =  Bool)



Date html generated: 2020_05_20-PM-07_44_54
Last ObjectModification: 2020_05_02-PM-08_06_20

Theory : cubical!type!theory


Home Index