Nuprl Lemma : csm-cubical-bool
∀[H:j⊢]. ∀[s:H j⟶ ()].  ((Bool)s = Bool ∈ {H ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
cubical-bool: Bool
, 
cubical-universe: c𝕌
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
trivial-cube-set: ()
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
cubical-bool: Bool
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
true: True
, 
discrete-comp: discrete-comp(G;T)
, 
csm-composition: (comp)sigma
, 
universe-encode: encode(T;cT)
Lemmas referenced : 
cube_set_map_wf, 
trivial-cube-set_wf, 
cubical_set_wf, 
csm-universe-encode, 
discrete-cubical-type_wf, 
bool_wf, 
discrete-comp_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-term_wf-universe, 
csm-discrete-cubical-type, 
universe-encode_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
dependent_functionElimination, 
Error :memTop, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  ()].    ((Bool)s  =  Bool)
Date html generated:
2020_05_20-PM-07_44_54
Last ObjectModification:
2020_05_02-PM-08_06_20
Theory : cubical!type!theory
Home
Index