Nuprl Lemma : discrete-comp_wf
∀[G:j⊢]. ∀[T:Type].  (discrete-comp(G;T) ∈ G ⊢ CompOp(discr(T)))
Proof
Definitions occuring in Statement : 
discrete-comp: discrete-comp(G;T)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
discrete-cubical-type: discr(T)
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discrete-comp: discrete-comp(G;T)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
all: ∀x:A. B[x]
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
discrete-cubical-type: discr(T)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
subtype_rel: A ⊆r B
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
, 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1)
, 
squash: ↓T
, 
true: True
, 
cubical-subset: I,psi
, 
cube-cat: CubeCat
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
name-morph-satisfies: (psi f) = 1
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
compose: f o g
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
irr_face: irr_face(I;as;bs)
, 
lattice-fset-meet: /\(s)
, 
lattice-meet: a ∧ b
, 
fset-constrained-ac-glb: glb(P;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
union-deq: union-deq(A;B;a;b)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
names: names(I)
, 
rev_implies: P 
⇐ Q
, 
nc-s: s
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nc-1: (i1)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nc-0: (i0)
, 
cubical-term-at: u(a)
, 
discrete-cubical-term: discr(t)
Lemmas referenced : 
cubical-type-ap-morph_wf, 
discrete-cubical-type_wf, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-0_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
nc-1_wf, 
cubical-path-0_wf, 
cubical-term_wf, 
cubical-subset_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
names-hom_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
composition-uniformity_wf, 
istype-universe, 
cubical_set_wf, 
csm-discrete-cubical-type, 
cubical-path-condition'_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
I_cube_pair_redex_lemma, 
cat_arrow_triple_lemma, 
face_lattice-basis, 
subtype_rel_self, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
name-morph-satisfies_wf, 
iff_weakening_equal, 
fl-morph-fset-join, 
fset-image_wf, 
names_wf, 
assert_wf, 
fset-disjoint_wf, 
names-deq_wf, 
pi1_wf_top, 
pi2_wf, 
product-deq_wf, 
deq-fset_wf, 
strong-subtype-set2, 
face_lattice-deq_wf, 
irr_face_wf, 
subtype_rel_product, 
top_wf, 
istype-assert, 
face_lattice-fset-join-eq-1, 
fl-morph_wf, 
deq_wf, 
fset-image-compose, 
member-fset-image-iff, 
subset-cubical-term, 
lattice-le_wf, 
lattice-fset-join-is-lub, 
bdd-distributive-lattice-subtype-bdd-lattice, 
cube_set_restriction_pair_lemma, 
lattice-hom-le, 
cubical-subset_functionality_wrt_le, 
discrete-cubical-term-is-constant-on-irr-face, 
fset-subtype, 
names-subtype, 
cubical-type_wf, 
face_lattice-hom-fixes-sublattice, 
fl-morph-fl0, 
fl0_wf, 
dM-to-FL_wf, 
neg-dM_inc, 
dM-to-FL-opp, 
fl-morph-fl1, 
fl1_wf, 
dM-to-FL-inc, 
cubical-term-at_wf, 
nh-comp_wf, 
name-morph-satisfies-comp, 
face_lattice-hom-fixes-sublattice2, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
because_Cache, 
applyEquality, 
instantiate, 
cumulativity, 
setIsType, 
functionIsType, 
intEquality, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productEquality, 
isectEquality, 
productElimination, 
setEquality, 
independent_pairEquality, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
equalityElimination, 
promote_hyp
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:Type].    (discrete-comp(G;T)  \mmember{}  G  \mvdash{}  CompOp(discr(T)))
Date html generated:
2020_05_20-PM-05_21_22
Last ObjectModification:
2020_04_10-PM-00_01_47
Theory : cubical!type!theory
Home
Index