Nuprl Lemma : discrete-comp_wf

[G:j⊢]. ∀[T:Type].  (discrete-comp(G;T) ∈ G ⊢ CompOp(discr(T)))


Proof




Definitions occuring in Statement :  discrete-comp: discrete-comp(G;T) composition-op: Gamma ⊢ CompOp(A) discrete-cubical-type: discr(T) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-comp: discrete-comp(G;T) composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) all: x:A. B[x] cubical-type-ap-morph: (u f) pi2: snd(t) discrete-cubical-type: discr(T) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s] cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) squash: T true: True cubical-subset: I,psi cube-cat: CubeCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice guard: {T} iff: ⇐⇒ Q name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) compose: g uiff: uiff(P;Q) cand: c∧ B irr_face: irr_face(I;as;bs) lattice-fset-meet: /\(s) lattice-meet: a ∧ b fset-constrained-ac-glb: glb(P;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum union-deq: union-deq(A;B;a;b) lattice-1: 1 fset-singleton: {x} cons: [a b] names: names(I) rev_implies:  Q nc-s: s rev_uimplies: rev_uimplies(P;Q) nc-1: (i1) bool: 𝔹 unit: Unit it: sq_type: SQType(T) bnot: ¬bb assert: b nc-0: (i0) cubical-term-at: u(a) discrete-cubical-term: discr(t)
Lemmas referenced :  cubical-type-ap-morph_wf discrete-cubical-type_wf cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-0_wf subtype_rel-equal cubical-type-at_wf nc-1_wf cubical-path-0_wf cubical-term_wf cubical-subset_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf names-hom_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf composition-uniformity_wf istype-universe cubical_set_wf csm-discrete-cubical-type cubical-path-condition'_wf subset-cubical-term2 sub_cubical_set_self cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma equal_wf squash_wf true_wf I_cube_pair_redex_lemma cat_arrow_triple_lemma face_lattice-basis subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf name-morph-satisfies_wf iff_weakening_equal fl-morph-fset-join fset-image_wf names_wf assert_wf fset-disjoint_wf names-deq_wf pi1_wf_top pi2_wf product-deq_wf deq-fset_wf strong-subtype-set2 face_lattice-deq_wf irr_face_wf subtype_rel_product top_wf istype-assert face_lattice-fset-join-eq-1 fl-morph_wf deq_wf fset-image-compose member-fset-image-iff subset-cubical-term lattice-le_wf lattice-fset-join-is-lub bdd-distributive-lattice-subtype-bdd-lattice cube_set_restriction_pair_lemma lattice-hom-le cubical-subset_functionality_wrt_le discrete-cubical-term-is-constant-on-irr-face fset-subtype names-subtype cubical-type_wf face_lattice-hom-fixes-sublattice fl-morph-fl0 fl0_wf dM-to-FL_wf neg-dM_inc dM-to-FL-opp fl-morph-fl1 fl1_wf dM-to-FL-inc cubical-term-at_wf nh-comp_wf name-morph-satisfies-comp face_lattice-hom-fixes-sublattice2 eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule dependent_set_memberEquality_alt lambdaFormation_alt hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination because_Cache applyEquality instantiate cumulativity setIsType functionIsType intEquality inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality_alt isectIsTypeImplies hyp_replacement imageElimination imageMemberEquality baseClosed productEquality isectEquality productElimination setEquality independent_pairEquality productIsType equalityIstype applyLambdaEquality equalityElimination promote_hyp

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[T:Type].    (discrete-comp(G;T)  \mmember{}  G  \mvdash{}  CompOp(discr(T)))



Date html generated: 2020_05_20-PM-05_21_22
Last ObjectModification: 2020_04_10-PM-00_01_47

Theory : cubical!type!theory


Home Index