Nuprl Lemma : cubical-subset_functionality_wrt_le

J:fset(ℕ). ∀a,b:Point(face_lattice(J)).  (a ≤  sub_cubical_set{j:l}(J,a; J,b))


Proof




Definitions occuring in Statement :  cubical-subset: I,psi face_lattice: face_lattice(I) sub_cubical_set: Y ⊆ X fset: fset(T) nat: all: x:A. B[x] implies:  Q lattice-le: a ≤ b lattice-point: Point(l)
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 true: True unit: Unit trivial-cube-set: () cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) face-term-implies: Gamma ⊢ (phi  psi) squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q canonical-section: canonical-section(Gamma;A;I;rho;a) cubical-term-at: u(a) formal-cube: formal-cube(I) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) uiff: uiff(P;Q)
Lemmas referenced :  lattice-le_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf fset_wf nat_wf subtype_rel_self I_cube_wf face-presheaf_wf2 face-term-implies-subset formal-cube_wf1 canonical-section_wf trivial-cube-set_wf face-type_wf it_wf cubical-type-at_wf_face-type subset-cubical-term2 sub_cubical_set_self csm-ap-type_wf context-map_wf csm-face-type sub_cubical_set_wf squash_wf true_wf cubical_set_wf cubical-subset-is-context-subset-canonical iff_weakening_equal I_cube_pair_redex_lemma fl-morph_wf lattice-1_wf names-hom_wf face-type-ap-morph lattice-hom-le bdd-distributive-lattice-subtype-bdd-lattice lattice-1-le-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule instantiate lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination inhabitedIsType natural_numberEquality Error :memTop,  dependent_functionElimination imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination independent_functionElimination equalityIstype setElimination rename

Latex:
\mforall{}J:fset(\mBbbN{}).  \mforall{}a,b:Point(face\_lattice(J)).    (a  \mleq{}  b  {}\mRightarrow{}  sub\_cubical\_set\{j:l\}(J,a;  J,b))



Date html generated: 2020_05_20-PM-02_52_23
Last ObjectModification: 2020_04_19-PM-07_00_47

Theory : cubical!type!theory


Home Index