Nuprl Lemma : cubical-subset_functionality_wrt_le
∀J:fset(ℕ). ∀a,b:Point(face_lattice(J)).  (a ≤ b ⇒ sub_cubical_set{j:l}(J,a; J,b))
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi, 
face_lattice: face_lattice(I), 
sub_cubical_set: Y ⊆ X, 
fset: fset(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lattice-le: a ≤ b, 
lattice-point: Point(l)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
true: True, 
unit: Unit, 
trivial-cube-set: (), 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X), 
face-term-implies: Gamma ⊢ (phi ⇒ psi), 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
cubical-term-at: u(a), 
formal-cube: formal-cube(I), 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
uiff: uiff(P;Q)
Lemmas referenced : 
lattice-le_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
subtype_rel_self, 
I_cube_wf, 
face-presheaf_wf2, 
face-term-implies-subset, 
formal-cube_wf1, 
canonical-section_wf, 
trivial-cube-set_wf, 
face-type_wf, 
it_wf, 
cubical-type-at_wf_face-type, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-ap-type_wf, 
context-map_wf, 
csm-face-type, 
sub_cubical_set_wf, 
squash_wf, 
true_wf, 
cubical_set_wf, 
cubical-subset-is-context-subset-canonical, 
iff_weakening_equal, 
I_cube_pair_redex_lemma, 
fl-morph_wf, 
lattice-1_wf, 
names-hom_wf, 
face-type-ap-morph, 
lattice-hom-le, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-1-le-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
independent_isectElimination, 
inhabitedIsType, 
natural_numberEquality, 
Error :memTop, 
dependent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
equalityIstype, 
setElimination, 
rename
Latex:
\mforall{}J:fset(\mBbbN{}).  \mforall{}a,b:Point(face\_lattice(J)).    (a  \mleq{}  b  {}\mRightarrow{}  sub\_cubical\_set\{j:l\}(J,a;  J,b))
Date html generated:
2020_05_20-PM-02_52_23
Last ObjectModification:
2020_04_19-PM-07_00_47
Theory : cubical!type!theory
Home
Index