Nuprl Lemma : lattice-hom-le

[l1,l2:BoundedLattice]. ∀[f:Hom(l1;l2)]. ∀[x,y:Point(l1)].  x ≤ supposing x ≤ y


Proof




Definitions occuring in Statement :  bounded-lattice-hom: Hom(l1;l2) bdd-lattice: BoundedLattice lattice-le: a ≤ b lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] apply: a
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) lattice-le: a ≤ b subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  lattice-le_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-point_wf bounded-lattice-hom_wf bdd-lattice_wf equal_wf squash_wf true_wf iff_weakening_equal lattice-meet_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule axiomEquality hypothesis extract_by_obid isectElimination hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity independent_isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry imageElimination universeEquality productElimination functionExtensionality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[x,y:Point(l1)].    f  x  \mleq{}  f  y  supposing  x  \mleq{}  y



Date html generated: 2020_05_20-AM-08_44_50
Last ObjectModification: 2017_07_28-AM-09_14_19

Theory : lattices


Home Index