Nuprl Lemma : lattice-hom-le
∀[l1,l2:BoundedLattice]. ∀[f:Hom(l1;l2)]. ∀[x,y:Point(l1)].  f x ≤ f y supposing x ≤ y
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
lattice-le: a ≤ b
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
lattice-le: a ≤ b
, 
subtype_rel: A ⊆r B
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
lattice-le_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-point_wf, 
bounded-lattice-hom_wf, 
bdd-lattice_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-meet_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
independent_isectElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
universeEquality, 
productElimination, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[f:Hom(l1;l2)].  \mforall{}[x,y:Point(l1)].    f  x  \mleq{}  f  y  supposing  x  \mleq{}  y
Date html generated:
2020_05_20-AM-08_44_50
Last ObjectModification:
2017_07_28-AM-09_14_19
Theory : lattices
Home
Index