Nuprl Lemma : lattice-1-le-iff

[l:BoundedLattice]. ∀[b:Point(l)].  uiff(1 ≤ b;b 1 ∈ Point(l))


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice lattice-1: 1 lattice-le: a ≤ b lattice-point: Point(l) uiff: uiff(P;Q) uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bdd-lattice: BoundedLattice prop: implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q lattice-le: a ≤ b so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T}
Lemmas referenced :  iff_weakening_uiff lattice-le_wf lattice-1_wf equal_wf lattice-join_wf lattice-le-iff bdd-lattice-subtype-lattice lattice-point_wf uiff_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf squash_wf true_wf lattice-join-1 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation independent_isectElimination extract_by_obid isectElimination because_Cache setElimination rename hypothesisEquality hypothesis independent_functionElimination applyEquality sqequalRule lambdaEquality cumulativity universeEquality axiomEquality instantiate independent_pairEquality isect_memberEquality productEquality equalityTransitivity equalitySymmetry imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[b:Point(l)].    uiff(1  \mleq{}  b;b  =  1)



Date html generated: 2020_05_20-AM-08_26_14
Last ObjectModification: 2017_07_28-AM-09_13_11

Theory : lattices


Home Index