Nuprl Lemma : face_lattice-basis
∀I:fset(ℕ). ∀x:Point(face_lattice(I)).
  ∃fs:fset({p:fset(names(I)) × fset(names(I))| ↑fset-disjoint(NamesDeq;fst(p);snd(p))} )
   (x = \/(λpr.irr_face(I;fst(pr);snd(pr))"(fs)) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
irr_face: irr_face(I;as;bs)
, 
face_lattice-deq: face_lattice-deq()
, 
face_lattice: face_lattice(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
lattice-fset-join: \/(s)
, 
lattice-point: Point(l)
, 
fset-image: f"(s)
, 
deq-fset: deq-fset(eq)
, 
fset-disjoint: fset-disjoint(eq;as;bs)
, 
fset: fset(T)
, 
product-deq: product-deq(A;B;a;b)
, 
nat: ℕ
, 
assert: ↑b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
and: P ∧ Q
Lemmas referenced : 
face_lattice_components_wf, 
equal_wf, 
lattice-fset-join_wf, 
decidable__equal_face_lattice, 
fset-image_wf, 
product-deq_wf, 
deq-fset_wf, 
names-deq_wf, 
strong-subtype-deq-subtype, 
fset_wf, 
names_wf, 
assert_wf, 
fset-disjoint_wf, 
pi1_wf_top, 
pi2_wf, 
strong-subtype-set2, 
face_lattice-deq_wf, 
irr_face_wf, 
set_wf, 
face_lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
isectElimination, 
independent_functionElimination, 
productEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
universeEquality
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}x:Point(face\_lattice(I)).
    \mexists{}fs:fset(\{p:fset(names(I))  \mtimes{}  fset(names(I))|  \muparrow{}fset-disjoint(NamesDeq;fst(p);snd(p))\}  )
      (x  =  \mbackslash{}/(\mlambda{}pr.irr\_face(I;fst(pr);snd(pr))"(fs)))
Date html generated:
2017_10_05-AM-01_11_39
Last ObjectModification:
2017_03_02-PM-10_27_47
Theory : cubical!type!theory
Home
Index