Nuprl Lemma : face_lattice-basis

I:fset(ℕ). ∀x:Point(face_lattice(I)).
  ∃fs:fset({p:fset(names(I)) × fset(names(I))| ↑fset-disjoint(NamesDeq;fst(p);snd(p))} )
   (x \/(λpr.irr_face(I;fst(pr);snd(pr))"(fs)) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  irr_face: irr_face(I;as;bs) face_lattice-deq: face_lattice-deq() face_lattice: face_lattice(I) names-deq: NamesDeq names: names(I) lattice-fset-join: \/(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-disjoint: fset-disjoint(eq;as;bs) fset: fset(T) product-deq: product-deq(A;B;a;b) nat: assert: b pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  lambda: λx.A[x] product: x:A × B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q top: Top so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a pi1: fst(t) pi2: snd(t) bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q
Lemmas referenced :  face_lattice_components_wf equal_wf lattice-fset-join_wf decidable__equal_face_lattice fset-image_wf product-deq_wf deq-fset_wf names-deq_wf strong-subtype-deq-subtype fset_wf names_wf assert_wf fset-disjoint_wf pi1_wf_top pi2_wf strong-subtype-set2 face_lattice-deq_wf irr_face_wf set_wf face_lattice_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality isectElimination independent_functionElimination productEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry instantiate cumulativity universeEquality

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}x:Point(face\_lattice(I)).
    \mexists{}fs:fset(\{p:fset(names(I))  \mtimes{}  fset(names(I))|  \muparrow{}fset-disjoint(NamesDeq;fst(p);snd(p))\}  )
      (x  =  \mbackslash{}/(\mlambda{}pr.irr\_face(I;fst(pr);snd(pr))"(fs)))



Date html generated: 2017_10_05-AM-01_11_39
Last ObjectModification: 2017_03_02-PM-10_27_47

Theory : cubical!type!theory


Home Index