Nuprl Lemma : face-forall-type-subtype
∀[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}].  ({H.𝕀, phi ⊢ _} ⊆r {H.𝕀, ((∀ phi))p ⊢ _})
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
subset-cubical-type, 
context-subset_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
face-forall_wf, 
face-term-implies-subset, 
face-forall-implies, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
Error :memTop, 
independent_isectElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    (\{H.\mBbbI{},  phi  \mvdash{}  \_\}  \msubseteq{}r  \{H.\mBbbI{},  ((\mforall{}  phi))p  \mvdash{}  \_\})
Date html generated:
2020_05_20-PM-03_03_53
Last ObjectModification:
2020_04_04-PM-05_19_54
Theory : cubical!type!theory
Home
Index