Nuprl Lemma : face-forall-type-subtype

[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}].  ({H.𝕀phi ⊢ _} ⊆{H.𝕀((∀ phi))p ⊢ _})


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  subset-cubical-type context-subset_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf face-forall_wf face-term-implies-subset face-forall-implies cubical-term_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache Error :memTop,  independent_isectElimination axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    (\{H.\mBbbI{},  phi  \mvdash{}  \_\}  \msubseteq{}r  \{H.\mBbbI{},  ((\mforall{}  phi))p  \mvdash{}  \_\})



Date html generated: 2020_05_20-PM-03_03_53
Last ObjectModification: 2020_04_04-PM-05_19_54

Theory : cubical!type!theory


Home Index