Nuprl Lemma : face-forall-implies

[H:j⊢]. ∀[phi:{H.𝕀 ⊢ _:𝔽}].  H.𝕀 ⊢ (((∀ phi))p  phi)


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-term-implies: Gamma ⊢ (phi  psi) face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q cube-context-adjoin: X.A interval-presheaf: 𝕀 subtype_rel: A ⊆B names: names(I) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q cubical-type-at: A(a) pi1: fst(t) csm-ap-type: (AF)s face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cc-adjoin-cube: (v;u) pi2: snd(t) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra nc-p: (i/z) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bnot: ¬bb not: ¬A false: False exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) assert: b nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) face-forall: (∀ phi) cubical-term-at: u(a) cc-fst: p csm-ap: (s)x
Lemmas referenced :  cc-fst_wf interval-type_wf I_cube_pair_redex_lemma interval-type-at nc-p_wf new-name_wf dM_inc_wf add-name_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-ap-type_wf face-type_wf csm-ap-term_wf face-forall_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf cubical-term_wf cubical_set_wf cubical-term-at-morph cc-adjoin-cube_wf cube-set-restriction_wf nc-s_wf f-subset-add-name face-type-at face-type-ap-morph cube_set_restriction_pair_lemma squash_wf true_wf istype-universe cubical-type-cumulativity2 cubical-type_wf istype-cubical-type-at cube-set-restriction-comp iff_weakening_equal cube-set-restriction-id s-comp-nc-p dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM-lift-inc eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert assert_elim bnot_wf bool_wf eq_int_eq_true bfalse_wf btrue_neq_bfalse bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int btrue_wf not_assert_elim full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf interval-type-ap-morph csm-ap-term-at fl_all-implies-instance
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis lambdaFormation_alt dependent_functionElimination Error :memTop,  productElimination rename applyEquality lambdaEquality_alt setElimination inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule because_Cache dependent_set_memberEquality_alt universeIsType intEquality independent_isectElimination natural_numberEquality equalityIstype productEquality cumulativity isectEquality hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed dependent_pairEquality_alt independent_functionElimination unionElimination equalityElimination independent_pairFormation productIsType applyLambdaEquality voidElimination dependent_pairFormation_alt promote_hyp approximateComputation int_eqEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].    H.\mBbbI{}  \mvdash{}  (((\mforall{}  phi))p  {}\mRightarrow{}  phi)



Date html generated: 2020_05_20-PM-03_03_14
Last ObjectModification: 2020_04_04-PM-05_20_20

Theory : cubical!type!theory


Home Index