Nuprl Lemma : face-zero-as-face-one

[Gamma:j⊢]. ∀[i:{Gamma ⊢ _:𝕀}].  ((i=0) (1-(i)=1) ∈ {Gamma ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-zero: (i=0) face-one: (i=1) face-type: 𝔽 interval-rev: 1-(r) interval-type: 𝕀 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] face-zero: (i=0) dM-to-FL: dM-to-FL(I;z) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dm-neg: ¬(x) cubical-term-at: u(a) face-one: (i=1) interval-rev: 1-(r) dma-neg: ¬(x) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt subtype_rel: A ⊆B cubical-term: {X ⊢ _:A}
Lemmas referenced :  cubical-term-equal2 face-type_wf face-zero_wf face-one_wf interval-rev_wf I_cube_wf fset_wf nat_wf cubical-term_wf interval-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate independent_isectElimination lambdaFormation_alt sqequalRule applyEquality lambdaEquality_alt setElimination rename inhabitedIsType because_Cache universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[i:\{Gamma  \mvdash{}  \_:\mBbbI{}\}].    ((i=0)  =  (1-(i)=1))



Date html generated: 2020_05_20-PM-02_43_03
Last ObjectModification: 2020_04_04-PM-04_51_13

Theory : cubical!type!theory


Home Index