Nuprl Lemma : filling_term_1
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[T:{H.𝕀 ⊢ _}]. ∀[u:{H.𝕀, (phi)p ⊢ _:T}]. ∀[a0:{H ⊢ _:(T)[0(𝕀)][phi |⟶ u[0]]}].
∀[cT:H.𝕀 ⊢ CompOp(T)].
  ((fill cT [phi ⊢→ u] a0)[1(𝕀)] = comp cT [phi ⊢→ u] a0 ∈ {H ⊢ _:(T)[1(𝕀)]})
Proof
Definitions occuring in Statement : 
filling_term: fill cA [phi ⊢→ u] a0
, 
composition-term: comp cA [phi ⊢→ u] a0
, 
composition-op: Gamma ⊢ CompOp(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
filling_term: fill cA [phi ⊢→ u] a0
, 
guard: {T}
Lemmas referenced : 
fill_term_1, 
comp-op-to-comp-fun_wf2, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-type-cumulativity2, 
comp_term-composition-term, 
composition-op_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
partial-term-0_wf, 
cubical-term_wf, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
thin-context-subset, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
Error :memTop, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[cT:H.\mBbbI{}  \mvdash{}  CompOp(T)].
    ((fill  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)[1(\mBbbI{})]  =  comp  cT  [phi  \mvdash{}\mrightarrow{}  u]  a0)
Date html generated:
2020_05_20-PM-04_54_15
Last ObjectModification:
2020_04_10-AM-11_33_31
Theory : cubical!type!theory
Home
Index