Nuprl Lemma : subset-constrained-cubical-term
∀[X,Y:j⊢].
  ∀[A:{X ⊢ _}]. ∀[phi:{X ⊢ _:𝔽}]. ∀[t:{X, phi ⊢ _:A}].  ({X ⊢ _:A[phi |⟶ t]} ⊆r {Y ⊢ _:A[phi |⟶ t]}) 
  supposing sub_cubical_set{j:l}(Y; X)
Proof
Definitions occuring in Statement : 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
subset-cubical-term, 
cubical-term_wf, 
context-subset_wf, 
thin-context-subset, 
cubical-type-cumulativity2, 
face-type_wf, 
cubical-type_wf, 
sub_cubical_set_wf, 
cubical_set_wf, 
sub_cubical_set_functionality2, 
constrained-cubical-term_wf, 
cubical_set_cumulativity-i-j, 
subset-cubical-type, 
sub_cubical_set_transitivity, 
context-subset-is-subset, 
subset-cubical-term2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
universeIsType, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
equalityIstype, 
independent_pairFormation, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[X,Y:j\mvdash{}].
    \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[phi:\{X  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{X,  phi  \mvdash{}  \_:A\}].
        (\{X  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  t]\}  \msubseteq{}r  \{Y  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  t]\}) 
    supposing  sub\_cubical\_set\{j:l\}(Y;  X)
Date html generated:
2020_05_20-PM-02_58_52
Last ObjectModification:
2020_04_06-PM-00_06_58
Theory : cubical!type!theory
Home
Index