Nuprl Lemma : term-to-path-eta

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[pth:{X ⊢ _:(Path_A b)}].  (X ⊢ <>((pth)p q) pth ∈ {X ⊢ _:(Path_A b)})


Proof




Definitions occuring in Statement :  term-to-path: <>(a) cubical-path-app: pth r path-type: (Path_A b) cc-snd: q cc-fst: p csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B cubical-path-app: pth r path-eta: path-eta(pth) all: x:A. B[x] term-to-path: <>(a) pathtype: Path(A) cubicalpath-app: pth r guard: {T} cubical-fun: (A ⟶ B) squash: T prop: true: True
Lemmas referenced :  paths-equal cubical-term_wf path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf path-type-subtype term-to-path_wf path-eta_wf cubical-fun-as-cubical-pi interval-type_wf cubical-eta csm-ap-type_wf cube-context-adjoin_wf cc-fst_wf subset-cubical-term2 sub_cubical_set_self pathtype_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis universeIsType instantiate applyEquality sqequalRule because_Cache dependent_functionElimination equalityTransitivity lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[pth:\{X  \mvdash{}  \_:(Path\_A  a  b)\}].    (X  \mvdash{}  <>((pth)p  @  q)  =  pth)



Date html generated: 2020_05_20-PM-03_18_53
Last ObjectModification: 2020_04_06-PM-06_34_34

Theory : cubical!type!theory


Home Index