Nuprl Lemma : eu-add-length-cancel-right

[e:EuclideanPlane]. ∀[x,y,z:{p:Point| O_X_p} ].  y ∈ {p:Point| O_X_p}  supposing z ∈ {p:Point| O_X_p} 


Proof




Definitions occuring in Statement :  eu-add-length: q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: euclidean-plane: EuclideanPlane all: x:A. B[x] guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  eu-add-length-cancel-left equal_wf eu-point_wf eu-between-eq_wf eu-O_wf eu-X_wf eu-add-length_wf euclidean-plane_wf eu-add-length-comm iff_weakening_equal
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination setEquality setElimination rename dependent_functionElimination equalityEquality equalityTransitivity equalitySymmetry productElimination independent_functionElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[x,y,z:\{p:Point|  O\_X\_p\}  ].    x  =  y  supposing  x  +  z  =  y  +  z



Date html generated: 2016_05_18-AM-06_38_34
Last ObjectModification: 2015_12_28-AM-09_24_23

Theory : euclidean!geometry


Home Index