Nuprl Lemma : eu-colinear-switch

e:EuclideanPlane. ∀a,b,c:Point.  (Colinear(a;b;c)  (a c ∈ Point))  Colinear(a;c;b))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: less_than: a < b squash: T true: True uall: [x:A]. B[x] select: L[n] cons: [a b] subtract: m euclidean-plane: EuclideanPlane
Lemmas referenced :  euclidean-plane_wf eu-colinear_wf eu-point_wf equal_wf not_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma eu-colinear-is-colinear-set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation introduction imageMemberEquality baseClosed isectElimination because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (Colinear(a;b;c)  {}\mRightarrow{}  (\mneg{}(a  =  c))  {}\mRightarrow{}  Colinear(a;c;b))



Date html generated: 2016_05_18-AM-06_44_16
Last ObjectModification: 2016_01_16-PM-10_28_30

Theory : euclidean!geometry


Home Index