Nuprl Lemma : euclid-P1-ext

e:EuclideanPlane. ∀A,B:Point.  ∃C:Point. (AC=AB ∧ BC=AB ∧ AC=BC) supposing ¬(A B ∈ Point)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  spreadn: spread7 stable__eu-congruent sq_stable__from_stable sq_stable__eu-congruent eu-seg-congruent-iff-length eu-congruent-iff-length record-select: r.x eu-extend: (extend ab by cd) eu-extend-exists uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] circle-circle-continuity1 euclid-P1 member: t ∈ T
Lemmas referenced :  stable__eu-congruent sq_stable__from_stable sq_stable__eu-congruent eu-seg-congruent-iff-length eu-congruent-iff-length eu-extend-exists circle-circle-continuity1 euclid-P1
Rules used in proof :  equalitySymmetry equalityTransitivity independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B:Point.    \mexists{}C:Point.  (AC=AB  \mwedge{}  BC=AB  \mwedge{}  AC=BC)  supposing  \mneg{}(A  =  B)



Date html generated: 2016_07_08-PM-05_54_28
Last ObjectModification: 2016_07_05-PM-03_04_23

Theory : euclidean!geometry


Home Index