Nuprl Lemma : euclid-P1-ext
∀e:EuclideanPlane. ∀A,B:Point.  ∃C:Point. (AC=AB ∧ BC=AB ∧ AC=BC) supposing ¬(A = B ∈ Point)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
spreadn: spread7, 
stable__eu-congruent, 
sq_stable__from_stable, 
sq_stable__eu-congruent, 
eu-seg-congruent-iff-length, 
eu-congruent-iff-length, 
record-select: r.x
, 
eu-extend: (extend ab by cd)
, 
eu-extend-exists, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
circle-circle-continuity1, 
euclid-P1, 
member: t ∈ T
Lemmas referenced : 
stable__eu-congruent, 
sq_stable__from_stable, 
sq_stable__eu-congruent, 
eu-seg-congruent-iff-length, 
eu-congruent-iff-length, 
eu-extend-exists, 
circle-circle-continuity1, 
euclid-P1
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B:Point.    \mexists{}C:Point.  (AC=AB  \mwedge{}  BC=AB  \mwedge{}  AC=BC)  supposing  \mneg{}(A  =  B)
Date html generated:
2016_07_08-PM-05_54_28
Last ObjectModification:
2016_07_05-PM-03_04_23
Theory : euclidean!geometry
Home
Index