Nuprl Lemma : euclid-P1
∀e:EuclideanPlane. ∀A,B:Point.  ∃C:Point. (AC=AB ∧ BC=AB ∧ AC=BC) supposing ¬(A = B ∈ Point)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
Lemmas referenced : 
eu-point_wf, 
not_wf, 
equal_wf, 
euclidean-plane_wf, 
circle-circle-continuity1, 
eu-extend-exists, 
eu-between-eq_wf, 
eu-congruent_wf, 
exists_wf, 
eu-between-eq-trivial-left, 
eu-congruent-refl, 
eu-congruent-iff-length, 
eu-length-flip, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
productElimination, 
dependent_set_memberEquality, 
productEquality, 
dependent_pairFormation, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B:Point.    \mexists{}C:Point.  (AC=AB  \mwedge{}  BC=AB  \mwedge{}  AC=BC)  supposing  \mneg{}(A  =  B)
Date html generated:
2016_05_18-AM-06_45_52
Last ObjectModification:
2015_12_28-AM-09_22_54
Theory : euclidean!geometry
Home
Index