Nuprl Lemma : euclid-P3-ext

e:EuclideanPlane. ∀A,B,C1,C2:Point.  ∃E:Point. (A_E_B ∧ AE=C1C2) supposing (C1 C2 ∈ Point)) ∧ |C1C2| < |AB|


Proof




Definitions occuring in Statement :  eu-lt: p < q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T euclid-P3 eu-extend-exists eu-extend: (extend ab by cd) record-select: r.x stable__eu-between-eq uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] eu-between-eq-def eu-extend-property sq_stable__eu-congruent sq_stable__from_stable stable__eu-congruent
Lemmas referenced :  euclid-P3 lifting-strict-spread has-value_wf_base base_wf is-exception_wf eu-extend-exists stable__eu-between-eq eu-between-eq-def eu-extend-property sq_stable__eu-congruent sq_stable__from_stable stable__eu-congruent
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C1,C2:Point.
    \mexists{}E:Point.  (A\_E\_B  \mwedge{}  AE=C1C2)  supposing  (\mneg{}(C1  =  C2))  \mwedge{}  |C1C2|  <  |AB|



Date html generated: 2016_10_26-AM-07_46_11
Last ObjectModification: 2016_08_29-PM-03_33_31

Theory : euclidean!geometry


Home Index