Nuprl Lemma : euclid-P3

e:EuclideanPlane. ∀A,B,C1,C2:Point.  ∃E:Point. (A_E_B ∧ AE=C1C2) supposing (C1 C2 ∈ Point)) ∧ |C1C2| < |AB|


Proof




Definitions occuring in Statement :  eu-lt: p < q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T prop: and: P ∧ Q uall: [x:A]. B[x] euclidean-plane: EuclideanPlane not: ¬A implies:  Q false: False uiff: uiff(P;Q) exists: x:A. B[x] cand: c∧ B stable: Stable{P} squash: T so_lambda: λ2x.t[x] so_apply: x[s] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q eu-lt: p < q
Lemmas referenced :  not_wf equal_wf eu-point_wf eu-lt_wf eu-length_wf eu-mk-seg_wf euclidean-plane_wf eu-extend-exists eu-lt-null-segment eu-congruent_wf eu-between-eq_wf eu-congruence-identity-sym false_wf eu-between-eq-same-side2 eu-between-eq-symmetry stable__eu-between-eq eu-add-length-between eu-congruent-iff-length eu-O_wf eu-X_wf eu-add-length_wf squash_wf true_wf set_wf iff_weakening_equal eu-le-add1 eu-lt_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation productEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache dependent_functionElimination productElimination equalitySymmetry hyp_replacement Error :applyLambdaEquality,  sqequalRule independent_isectElimination voidElimination equalityTransitivity equalityEquality universeEquality dependent_set_memberEquality independent_functionElimination dependent_pairFormation independent_pairFormation setEquality applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C1,C2:Point.
    \mexists{}E:Point.  (A\_E\_B  \mwedge{}  AE=C1C2)  supposing  (\mneg{}(C1  =  C2))  \mwedge{}  |C1C2|  <  |AB|



Date html generated: 2016_10_26-AM-07_46_08
Last ObjectModification: 2016_08_29-PM-03_31_29

Theory : euclidean!geometry


Home Index