Nuprl Lemma : eu-lt_wf

[e:EuclideanPlane]. ∀[p,q:{p:Point| O_X_p} ].  (p < q ∈ ℙ)


Proof




Definitions occuring in Statement :  eu-lt: p < q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-lt: p < q prop: and: P ∧ Q euclidean-plane: EuclideanPlane all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eu-le_wf eu-between-eq_wf eu-O_wf eu-X_wf not_wf equal_wf eu-point_wf set_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_set_memberEquality hypothesis dependent_functionElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry lambdaEquality isect_memberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,q:\{p:Point|  O\_X\_p\}  ].    (p  <  q  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-06_37_29
Last ObjectModification: 2015_12_28-AM-09_25_11

Theory : euclidean!geometry


Home Index