Nuprl Lemma : eu-lt-null-segment

e:EuclideanPlane. ∀[p:{p:Point| O_X_p} ]. ∀[a:Point].  uiff(p < |aa|;False)


Proof




Definitions occuring in Statement :  eu-lt: p < q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] false: False set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] eu-lt: p < q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T false: False not: ¬A implies:  Q label: ...$L... t guard: {T} subtype_rel: A ⊆B euclidean-plane: EuclideanPlane prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eu-point_wf eu-between-eq_wf eu-O_wf eu-X_wf equal_functionality_wrt_subtype_rel2 eu-length_wf eu-mk-seg_wf not_wf equal_wf false_wf eu-le-null-segment and_wf eu-le_wf uiff_wf set_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut independent_pairFormation introduction sqequalHypSubstitution productElimination thin hypothesis independent_functionElimination lambdaEquality setElimination rename hypothesisEquality setEquality lemma_by_obid isectElimination dependent_functionElimination because_Cache equalityTransitivity equalitySymmetry independent_isectElimination voidElimination sqequalRule productEquality equalityEquality applyEquality independent_pairEquality axiomEquality addLevel cumulativity

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p:\{p:Point|  O\_X\_p\}  ].  \mforall{}[a:Point].    uiff(p  <  |aa|;False)



Date html generated: 2016_05_18-AM-06_38_10
Last ObjectModification: 2015_12_28-AM-09_25_57

Theory : euclidean!geometry


Home Index