Nuprl Lemma : eu-lt_transitivity

e:EuclideanPlane. ∀[p,q,r:{p:Point| O_X_p} ].  (p < r) supposing (q < and p ≤ q)


Proof




Definitions occuring in Statement :  eu-lt: p < q eu-le: p ≤ q euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a eu-lt: p < q eu-le: p ≤ q member: t ∈ T prop: euclidean-plane: EuclideanPlane so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B not: ¬A implies:  Q sq_stable: SqStable(P) false: False squash: T
Lemmas referenced :  eu-lt_wf eu-between-eq_wf eu-O_wf eu-X_wf eu-le_wf set_wf eu-point_wf euclidean-plane_wf not_wf equal_wf squash_wf eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4 sq_stable__and sq_stable__eu-between-eq sq_stable__not eu-between-eq-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality hypothesis dependent_functionElimination because_Cache sqequalRule lambdaEquality isect_memberEquality productElimination equalityEquality independent_isectElimination independent_pairFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality,  independent_functionElimination voidElimination imageMemberEquality baseClosed imageElimination equalityTransitivity

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[p,q,r:\{p:Point|  O\_X\_p\}  ].    (p  <  r)  supposing  (q  <  r  and  p  \mleq{}  q)



Date html generated: 2016_10_26-AM-07_41_41
Last ObjectModification: 2016_07_12-AM-08_07_55

Theory : euclidean!geometry


Home Index